all about electricity (indonesia)

Musim hujan telah tiba. Berkah yang harus kita syukuri. Bagi insinyur listrik, musim hujan juga tantangan tersendiri, terutama yang bekerja di bidang distribusi listrik. Biasanya gangguan yang akan menaikkan SAIFI, seperti pohon tumbang yang menimpa kabel / tiang listrik, akan terjadi di musim hujan ini.

Bagi masyarakat umum, Waspada ! Jangan ambil risiko membersihkan / menyingkirkan sendiri pohon tumbang di kabel listrik tersebut, telpon PLN di nomor 123.

FA Web Banner PLN Contact Center 2014 850x285 20140307

Saya tempel video disini (iklan layanan dari Energex), risiko safety apa yang bisa terjadi dengan pohon tumbang ini:

Bonusnya, prinsip terjadinya petir dan cara aman berlindungnya:

Semoga bermanfaat…

Be safe, and live…

Pameran kelistrikan dalam rangka memperingati Hari Listrik Nasional ke-69 di Jakarta Convention Center 1-3 Oktober 2014 ini sangat sayang jika dilewatkan. Saya share foto-foto di pameran ini yang berhubungan dengan artikel saya sebelumnya.

 

Photo0185

Photo0186

Photo0178

Photo0179

 

Photo0172

Photo0173

Photo0174
CNG MTW 1

CNG MTW 2
Photo0175

Sorry, I’m going to write this article in Bahasa Indonesia, I change my mind once I begin to write the first paragraph.

Artikel saya kali ini, berkaitan dengan beberapa artikel saya yang terdahulu, yang membicarakan apa itu sistem tenaga listrik yang terisolasi dari jala-jala utama, apa problem dan tantangannya, kenapa ide penggunaan sumber energi terbarukan ternyata bukan pil ajaib yang bisa menyelesaikan semua problem sekaligus pada sistem yang terisolasi, sekaligus kaitannya dengan penggunaan bahan bakar gas dalam bentuk CNG yang mulai banyak digunakan di pembangkit listrik. Sebelumnya saya akan sedikit mengulas ulang, topik saya yang lalu yang terkait dengan CNG.

Dalam beberapa bulan ini saya beruntung bisa berkesempatan mengunjungi fasilitas-fasilitas pembangkit listrik tenaga gas milik PLN dan anak-anak usahanya yang dilengkapi dengan CNG Plant. Saya telah mengunjungi fasilitas-fasilitas tersebut yang berada di:

  1. Grati, Pasuruan, Jawa Timur
  2. Tambaklorok, Semarang, Jawa Tengah
  3. Muara Tawar, Bekasi, Jawa Barat
  4. Jakabaring, Palembang, Sumatera Selatan
  5. Sei Gelam, Jambi
  6. Kijang, Pulau Bintan, Batam
  7. Pulau Bawean, Gresik, Jawa Timur

Tiap fasilitas tersebut memiliki keunikan, karena memang problem yang dihadapi di masing-masing lokasi bervariasi. Dari segi disain, CNG Plant di lokasi-lokasi tersebut dapat dibagi menjadi 2 kelompok besar:

  1. Fasilitas CNG Plant Mother-Daughter Station berada di lokasi yang sama (nomor 1 sampai 5)
  2. Mother dan Daughter Station CNG Plant berada di lokasi berbeda dan dipisahkan oleh perairan (nomor 6 dan 7)

Namun demikian, rumus kapan CNG Plant dibutuhkan di pembangkit listrik tetap sama:

  1. Ada pembangkit listrik yang berbahan bakar gas, baik berupa PLTG (Gas Turbine), PLTMG (Gas Engine) ataupun PLTDG (Diesel-Gas Engine)
  2. Bahan bakar berupa Gas Alam tersedia dalam bentuk gas pipa
  3. Pola kebutuhan listrik tidak rata (peak-off peak daily load curve)
  4. Harga bahan bakar minyak solar (HSD fuel oil) non subsidi lebih tinggi daripada harga gas bahkan setelah diproses menjadi CNG dan LNG dan diregasifikasi lagi

Jika keempat syarat tersebut terpenuhi, maka fasilitas CNG Plant layak dibangun di pembangkit listrik tersebut. Namun untuk syarat nomor 3 menjadi tidak wajib, ketika pembangkit listrik dengan bahan bakar gas berada di sistem yang terisolasi dengan main grid.

Nah, yang terjadi di sistem yang terisolasi, yang disebabkan oleh kondisi geografis berupa pulau kecil yang relatif jauh dari pulau besar tempat jala-jala besar berada, maka strategi penyediaan listrik dengan biaya yang ekonomis dan andal (reliable) menjadi problem yang tidak mudah.

Kenapa harus ada 2 kriteria, berupa:

  1. Andal
  2. Ekonomis

Hal ini karena, seringkali dua kriteria ini tidak bisa dipenuhi dalam saat yang bersamaan.

Misal, jika kita kita mengejar kriteria andal, maka jalan tercepat dan termudah adalah menyediakan PLTD (diesel engine) berbahan bakar minyak untuk pulau-pulau terpencil itu. Namun strategi ini berakibat kepada tidak ekonomisnya / mahalnya biaya operasi sistem tenaga listrik di pulau tersebut.

Banyak orang berpikir untuk menggunakan sumber-sumber energi terbarukan (renewable energy sources / RES) di pulau-pulau kecil tersebut untuk mengejar kriteria ekonomis. Bukan kah sinar matahari melimpah ruah di Indonesia ? Atau menggunakan tenaga angin yang bertiup di khatulistiwa ? Atau bahkan menggunakan energi pasang surut air laut ? Namun pengalaman menunjukkan, ketika sumber energi terbarukan coba dimanfaatkan, tapi tidak didahului oleh studi kelayakan yang komprehensif dan mendalam, seringkali yang ditemui adalah kegagalan, wasting money.

Sebagai contoh adalah penggunaan solar cell untuk PLTS, yang sering menjadi target proyek percontohan berbagai institusi. Biaya investasi solar cell sendiri memang cenderung turun dari waktu ke waktu jika dikuantifikasi dalam satuan Rupiah atau USD per kW peak, berkat penemuan teknologi-teknologi terbaru pada solar cell film. Namun penggunaan PLTS pada sistem yang terisolasi, membutuhkan investasi ekstra berupa fasilitas penyimpanan energi berupa baterai, sebagai penjaga stabilitas sistem. Apa yang terjadi jika kita nekat menggunakan PLTS pada sistem terisolasi tanpa baterai? Sistem akan menjadi sangat tidak stabil, mengingat sistem yang isolated biasanya tidak terlalu besar, hanya di orde beberapa ratus kW atau beberapa MW saja. Bandingkan dengan sistem tenaga listrik Jawa yang beban puncaknya sudah melewati 20000 MW tahun lalu. Gangguan sedikit saja pada solar cell akan mengganggu kestabilan isolated system. Ingat, prinsip RES sebaiknya tidak lebih dari 20% dari total suplai untuk sistem ketenagalistrikan, dengan pertimbangan stabilitas sistem.

Baterai yang digunakan pun tidak bisa sembarang baterai, harus punya kemampuan cyclic, charging-discharging yang memadai. Dan sayangnya, tidak seperti trend harga solar cell yang bisa menurun, harga baterai cenderung stabil dari waktu ke waktu, sehingga PLTS dengan baterai mungkin hanya “murah” dalam biaya operasi, namun mungkin sebetulnya tidak terlalu ekonomis jika biaya investasi secara keseluruhan dalam life cycle cost-nya diperhitungkan.

Paper yang cukup komprehensif menjelaskan narasi di atas dan tersedia online, bisa dibaca pada tulisan Pak Ehnberg.

Nah, lalu bagaimana jalan keluarnya?

Menurut pengamatan saya, yang bisa kita lakukan adalah melakukan optimasi dari alternatif-alternatif penyediaan listrik di sistem terisolasi. Kita jangan sampai terjebak pada “fanatisme” solusi-solusi yang cenderung sektoral, tidak mau melihat solusi lain. Secara empiris, penyediaan tenaga listrik bagi konsumen di Pulau Bawean yang dilayani oleh PLN Distribusi Jawa Timur bekerja sama dengan PT PJB dapat menjadi bahan studi yang menarik. Usaha pengurangan biaya operasi dilakukan dengan substitusi bahan bakar minyak, yang semula dipakai oleh PLTD, mulai digantikan oleh bahan bakar gas dari CNG, yang dipakai oleh PLTMG. Substitusi ini tidak mudah, mengingat CNG harus dibawa melalui laut dari Gresik ke Pulau Bawean yang berjarak lebih dari 60 mil laut. Meski demikian, solusi ini secara empiris telah terbukti bisa direalisasikan dan dinikmati hasilnya.

Berikut foto-foto dari perjalanan saya ke Pulau Bawean:

bawean distancebawean

bawean pltmg cngbawean single line  bawean jettybawean jenbacher gas engine freq control   bawean cng tube skid bawean cng daughter station

Ketahanan Energi Indonesia

apo pakistan

Tidak seperti biasanya, setelah Lebaran kemarin, kali ini saya diberi Ayah saya yang mantan aktivis mahasiswa, sebuah buku. Uniknya, buku ini terkait langsung dengan apa yang saya kerjakan saat ini, dan kebetulan saya pernah bertemu langsung dengan pengarangnya. Langsung saja ya… Saya akan sedikit mengulas buku tersebut, yang berjudul, “Energi Selamatkan Negeri”, karya Dr. Herman Darnel Ibrahim. Saya mengenal beliau ketika beliau masih menjabat sebagai Direktur SDM PT Indonesia Power. Beliau sendiri lebih dikenal sebagai anggota Dewan Energi Nasional dan pernah menjadi Direktur Transmisi dan Distribusi PT PLN (Persero).

Beliau menuangkan pemikiran, perhatian, concern mengenai energi di Indonesia dalam buku ini. Pendapat beliau dalam buku ini dipuji Teguh Esha (penulis Ali Topan) sebagai cerminan intelektual, sekaligus Patriot yang berjuang demi NKRI. Teguh Esha sendiri dalam buku ini berperan melakukan “sedikit” Alih Bahasa agar buku ini tidak terlalu “berat” dengan membahasakannya ke bahasa yang populer.

buku energi selamatkan negeri

Dua bab pertama buku ini lebih banyak membicarakan terminologi dan data historis energi di Indonesia. Di bab berikutnya Dr. DHI membicarakan mengenai apa sebetulnya problem energi di negeri ini. Solusi menjadi hal utama yang beliau teriakkan. Walau demikian beliau sepenuhnya sadar, seperti yang kita ketahui bersama, isu-isu ini kerap digoreng politisi untuk mendapatkan simpati publik (kebijakan-kebijakan populis seperti mensubsidi BBM). “Subsidi orangnya, bukan komoditasnya”, menurut beliau untuk BBM.

Ketahanan (security) energi di masa depan menjadi perhatian utama. Beliau menekankan perubahan pola pikir bahwa Indonesia kaya akan sumber daya energi perlu dikoreksi. Di banding negara-negara lain di dunia, cadangan migas dan batubara terhitung kecil, sehingga beliau menegaskan, “Stop ekspor gas dan batubara !”, dalam rangka memperoleh competitive advantage.

indonesia tidak kaya energi

Dari sisi konten, buku ini memberikan argumentasi yang “mencerahkan” dan terhitung komprehensif isinya, walaupun jika membicarakan topik “energi” tentu tidak lepas dari dunia migas (oil & gas). Di buku ini tidak terlalu banyak detail di dunia migas yang disinggung. Hal ini wajar mengingat latar belakang beliau lebih banyak bergelut di dunia kelistrikan. Lay-out buku bisa lebih baik lagi, untuk menghindari kesan padat dan berat. Secara keseluruhan, buku ini sangat membantu anda yang ingin memahami persoalan “Energi” di Indonesia dan solusi-solusinya dalam satu malam :-)

 

Seperti yang saya tulis setahun yang lalu, akhirnya proyek CNG Plant untuk memenuhi kebutuhan PLTG saat beban puncak (Peak Shaving) SJB selesai dibangun. Saya beruntung diundang hadir untuk ikut menyaksikan peresmiannya di PLTGU Grati, Pasuruan, Jawa Timur. Berita-beritanya di media cukup banyak, saya copaskan satu dari situs resmi PLN sbb:

PLN Operasikan CNG Plant Terbesar Di Dunia Untuk PLTGU Grati

PLN mengoperasikan Compressed Natural Gas (CNG) plant yang terbesar di Dunia dengan kapasitas 15 MMSCFD. CNG plant ini memiliki kemampuan menyalurkan gas untuk 3 unit gas turbin pembangkit listrik dengan total kapasitas 300 MW.

CNG PLTGU Grati

Direktur Utama PLN, Nur Pamudji (dua dari kanan) didampingi Direktur Utama PT Indonesia Power, Djoko Hastowo (paling kiri), Direktur Utama PT PJB, Susanto Purnomo (dua dari kiri) dan Dirut PT Enviromate Technology International (ETI), Awi Suriyanto (paling kanan) berbincang saat meninjau lokasi CNG usai peresmian Compressed Natural Gas (CNG) Plant PLTGU Grati, Pasuruan, Jawa Timur, Jumat, 14 Juni 2013.

PLTGU/PLTG Grati terdiri dari 2 blok yang saat ini mendapatkan suplai gas sebesar 90 BBTUD dari Santos melalui sumur Oyong dan Wortel. Suplai gas ini sanggup memasok 3 gas turbin (combined cycle) blok 1 masing-masing sebesar 100 MW. Sedangkan blok 2 (open cycle) berfungsi sebagai pemikul beban puncak (peaker) menggunakan bahan bakar HSD.

Dengan adanya CNG Plant (Compressed Natural Gas), maka PT Indonesia Power akan bisa mengoperasikan blok 2 sebagai pemikul beban puncak tanpa menggunakan BBM.

Biaya pokok produksi listrik menggunakan BBM sekitar 2.800 rupiah per kWh, sementara jika menggunakan CNG, BPP-nya hanya sekitar Rp1.000/ kWh. Dengan produksi listrik PLTG Grati Blok 2 selama 4 sampai 5 jam per hari yang berkisar 1.200 s/d 1.500 MWh, maka potensi penghematan akibat pengurangan BBM ini kurang lebih 1 triliun rupiah per tahun.

Pengunaan bahan bakar gas melalui Fasilitas CNG juga berdampak signifikan dengan lingkungan hidup. Sumbangan terhadap penurunan emisi dunia dari pengoperasian CNG Plant PLTGU Grati Blok 2 diestimasikan sebagai berikut : sekitar 254 ribu ton CO2 per tahun, 126,5 ton kadar SO2 per tahun dan 3.500 ton kadar NO2 pertahun. PLN saat ini juga membangun CNG untuk PLTGU Gresik, PLTGU Tambak Lorok dan PLTGU Muara Tawar.

Berita yang lain:

PERESMIAN CNG PLANT UBP PERAK & GRATI

RI Punya Penampung CNG Terbesar di Dunia

Indonesia Power Resmikan CNG Plant

PLN Resmikan CNG Terbesar Di Dunia

PLN Saves Rp1.7 Trillion from CNG Storage

CEPSI 2012

Tahun lalu saya jadi salah satu pembicara di sebuah konferensi, CEPSI, sayang kalau foto-fotonya tidak saya share :-)

cepsi2012jerowacik

Dibuka oleh Menteri ESDM…

cepsi2012imaduddin

Saya, menyampaikan paper saya, di depan forum :-)

cepsi2012imaduddinposter

Saya ikutan masang poster…

cepsi2012plnjavabalicrossing

Booth PLN (atas dan bawah) dan gambar proyek Java-Bali 500 KV Transmission Crossing…

cepsi2012pln

DPR menyetujui kenaikan TDL 15%  di tahun 2013. Seperti biasa, saat pembahasan dengan pemerintah, selalu dibarengi dengan isu inefisiensi di tubuh PLN, dan hampir selalu isu BBM menjadi tokoh sentralnya. Dan isu BBM ini ada benarnya, karena BBM masih memakan 43% atau Rp 49 T dari Rp 112 T biaya energi di tahun 2013, sementara subsidi untuk PLN sendiri hanya Rp 78 T.

Sumber: Gatra 20-26 September 2012

Masyarakat awam tentu bertanya, kok bisa porsi BBM masih besar, bukan kah beberapa tahun yang lalu diumumkan proyek besar PPDE 10000 MW yang mayoritas berbahan bakar batubara? Sedikit flashback, proyek crash program PPDE 10000 MW dilatarbelakangi defisit suplai listrik terutama di SJB akibat mandeknya proyek-proyek pembangkit listrik pasca krismon 1998. Sebelum masuk ke topik ini dan solusi yang saat ini sedang dikerjakan, ada isu lain yang terkait.

Isu tersebut adalah isu kecukupan pasokan daya di Sistem Jawa Bali yang 3-4 tahun yang lalu memuncak. Kini isu itu telah berlalu sejak mulai banyak masuknya pembangkit-pembangkit listrik PPDE 10000 MW. Apakah persoalan di SJB selesai sampai disini? Ternyata tidak, masih ada hal-hal yang membuat SJB tidak sepenuhnya bagus, dari sisi keandalan dan kualitas. Tahun-tahun terakhir ini kualitas frekuensi SJB cenderung bergejolak. Jika anda melihat dari trend monitoring frekuensi SJB, ekskursi frekuensi yang liar kadang terjadi dan fluktuasinya dari titik 50 Hz tidak terlalu mulus dibanding kondisi 10 tahun yang lalu misalnya.

 

Ekskursi frekuensi 25 September 2012

Upaya-upaya yang dilakukan oleh P3B JB sebagai operator sistem sebenarnya sudah maksimal untuk mempertahankan keandalan, kualitas dan keekonomian SJB. Salah satu langkah memperbaikinya dari sisi keandalan adalah terus berusaha mengaktifkan kembali fasilitas regulasi primer, governor free,   maupun regulasi sekunder, LFC, sebagai partisipasi unit-unit pembangkit pada SJB. Namun demikian, upaya ini masih belum memadai. Penyebab utamanya adalah berkurangnya proporsi pembangkit-pembangkit yang melayani segmentasi peaking load dan load follower. Hal ini merupakan konsekuensi dari tidak dioperasikannya semaksimal mungkin pembangkit-pembangkit ini yang melayani segmen ini, yang mayoritas berbahan bakar minyak (BBM).

Dahulu PLTG dan PLTGU minyak merupakan andalan SJB untuk menjaga kestabilan frekuensi, karena pembangkit jenis inilah yang bisa menaik dan menurunkan beban dengan ramping rate cepat. Fungsi ini juga bisa dilakukan oleh PLTA waduk, namun kita mengetahui kapasitas PLTA semakin menurun, karena laju sedimentasi waduk yang lebih cepat dari perkiraan semula misalnya, disamping variasi musim hujan dan kemarau juga berpengaruh.

Operator sistem berjuang keras menstabilkan sistem terutama pada waktu-waktu kritis jam 16.00 sampai 18.00 dimana ramp-nya mencapai 2000~3000 MW / jam.

 

Ilustrasi ramping rate demand yang ekstrim

Walaupun pembangkit-pembangkit baseload PLTU-PLTU batubara berusaha dijadikan load follower, namun hasilnya tidak optimal. Contohnya, saat ini pada malam/dini hari PLTU seperti Tanjung Jati, Suralaya bebannya diset rendah dan ketika pagi hari mulai dinaikkan. Dengan cara ini ekskursi frekuensi tetap terjadi terutama jika ada gangguan meski hanya di salah satu komponen SJB (N-1). Kenapa kita peduli pada ekskursi frekuensi? Jika ekskursi ini melampaui batas, bisa terjadi under frequency relay (UFR) bekerja, dan skema load shedding (pengurangan beban) mungkin terjadi. Akibatnya, bisa terjadi, cadangan sistem normal / sangat cukup, namun ada daerah yang mengalami pemadaman.

 

7 Oktober 2012: Masyarakat membutuhkan saluran untuk komplain listrik

Jadi semacam paradoks, suplai berlebih tapi dari sisi konsumen ada yang masih merasakan pemadaman. Penyebab paradoks ini juga bisa disebabkan oleh gangguan di level distribusi / lokal, misal ada penghantar saluran udara yang short karena ranting pohon, atau jembatan trafo IBT (inter-bus transformer) yang tidak cukup / mengalami gangguan.

Apa yang dilakukan oleh pengelola SJB untuk mengatasi hal-hal ini? Salah satu yang sangat strategis adalah berusaha mengoperasikan kembali unit-unit pembangkit yang melayani segmen beban puncak (peak shaving unit). Bagaimana caranya? Kita tahu, subsidi BBM untuk listrik pada APBN terus berusaha ditekan, jadi mustahil memaksakan diri mengoperasikan kembali pembangkit yang menghasilkan 100 MW dengan meminum BBM sampai 100 ribu liter per 3 jam (meski dalam kondisi darurat hal ini tidak bisa dihindari, jika sampai terjadi black/brown out maka kerugian di sisi konsumen akan jauh lebih besar ketimbang subsidi yang dikeluarkan pemerintah).

Ide cemerlang yang akan segera direalisasikan di SJB adalah mensubstitusi BBM dengan bahan bakar gas. Kok bisa dibilang ide cemerlang? Bukan kah kita semua tahu BB Gas dari dulu juga jauh lebih murah daripada BBM?

Yang mungkin belum semua orang awam mengetahui adalah sifat natural penyaluran gas alam. PLTGU di luar negeri seperti di Jepang biasanya menggunakan bahan bakar gas dari gas alam cair (LNG), karena tidak mempunyai sumber /sumur gas di sekitarnya atau di dalam negeri. Karena gasnya disimpan dalam bentuk cair, maka pemanfaatannya dapat diatur, kapan pun dibutuhkan tinggal dialirkan, jadi mirip BBM yang disimpan di dalam tangki timbun. Nah, sumber gas untuk PLTGU-PLTGU di Indonesia tidak seperti itu. Sumber gasnya berasal dari gas pipa, gas yang dialirkan dari sumur / sumber gas melalui pipa gas.

 

Offshore platform

Dan yang perlu diketahui, sifat sumur gas sangat unik. Selain biasanya gas dipakai untuk lifting minyak (sumur gas dan minyak seringkali bercampur, jadi satu sumur bisa menghasilkan minyak dan gas sekaligus), gas ini juga hampir tidak bisa diatur besar kecil keluarannya. Sekali menyemburkan gas, maka harus dialirkan, jika tidak maka reservoirnya bisa rusak. Malahan ada kasus, karena keliru mengoperasikan, maka gasnya bercampur dengan air. Akibatnya, gas pipa aliran arusnya (flow rate) cenderung datar (flat). Manuver flow rate gas hanya terbatas pada memainkan tekanan (pressure) pada pipa yang panjang (line pack), yang biasanya sempit range-nya. Dan bisa diduga, karena bahan bakarnya konstan, maka produksi listrik dari pembangkit listriknya juga konstan.

Jadi PLTGU gas yang ada di Indonesia, suka tidak suka, bermain di segmen pasar beban dasar (base load) karena sifat alaminya tadi. Bagaimana jika SJB tidak menginginkan energi listrik dari PLTGU gas tadi?

 

Foto thermal Flare gas

Pilihannya ya itu tadi, tetap menerima listrik dari PLTGU gas dengan “mengalahkan” produksi listrik dari pembangkit lain, termasuk dari PLTU batubara yang seharusnya bermain di baseload, atau bisa juga membiarkan gas dari sumur gas dibakar (flare) ke udara bebas, namun gas yang dibakar ke udara tersebut tetap harus dibayar (Take or Pay). Gas alam harus dibakar jika dilepas ke udara, karena gas Metana adalah gas rumah kaca (green house gas) yang efek melubangi ozonnya jauh lebih parah daripada gas karbon dioksida hasil pembakaran. Ini juga menjadi alasan kenapa kontrak gas (PJBG/GSA) selalu mencantumkan klausul ToP, yaitu merupakan turunan dari sifat alami sumur gas yang diterjemahkan secara komersial.

Dari sini lah bisa dijelaskan, ide dasar subsitusi BBM dengan BBG pada Peak Shaver Unit sangat cemerlang. Ide ini mulai diidentifikasi dalam RUPTL PLN 2011-2020. Gas pipa yang sifat alaminya telah dijelaskan tadi, dirubah sifatnya dengan cara dijadikan compressed natural gas (CNG). Gas pipa, ditekan / dikompres menjadi bertekanan tinggi, disimpan dalam bejana (vessel), dan dilepas kembali pada saat dibutuhkan, pada Waktu Beban Puncak (WBP).

Jadi CNG ini mewarisi 2 sifat menguntungkan dari BBG dan BBM, dari gas alam mewarisi sifat harganya yang lebih murah dan lebih ramah lingkungan (beban emisi CO2, NOx lebih rendah), dari BBM mewarisi sifat fleksibilitasnya (bisa dimanfaatkan pada waktu tertentu). Meskipun proses kompresi CNG menimbulkan biaya, namun compressed fee ini dan harga BBG-nya masih jauh lebih murah dibandingkan BBM.

Bagaimana dengan alternatif lain untuk memenuhi beban puncak? PLTG CNG ini masih lebih baik dibanding misalnya PLTA Pump Storage (Upper Cisokan yang paling cepat akan beroperasi). Kita tahu investasi membangun PLTA apa pun relatif lebih besar dibanding membangun PLTG, dan waktu pembangunannya lama, bertahun-tahun (bandingkan dengan membangun PLTG, 1 tahun dapat berdiri). Apalagi jika PLTG-nya sudah ada, tinggal membangun CNG plant, maka solusi ini benar-benar dapat diandalkan delivery time-nya.

Bonus keuntungannya, beban PLTU-PLTU batubara diramalkan relatif akan lebih stabil (berkurang naik turunnya) sehingga secara tidak langsung akan meningkatkan keandalan PLTU-PLTU batubara (misal dari risiko bocornya pipa-pipa boiler karena thermal stress/fatigue). Secara keseluruhan, energy cost SJB akan turun untuk kondisi SJB dengan kualitas yang sama. Artinya, jika hendak dilakukan studi, maka perbandingan yang benar, apple to apple, adalah membandingkan energy cost di era pada saat PLTG minyak masih dijalankan (tahun 2011 ke bawah) dengan versus masa pada saat PLTG CNG pertama mulai beroperasi di SJB (diperkirakan mulai Q1 2013).

Awan Tag

Imaduddin's Weblog

all about electricity (indonesia)

all about electricity (indonesia)

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 63 pengikut lainnya.