all about electricity (indonesia)

Posts tagged ‘PLTG’

PLTG CNG, Solusi Baru untuk Memperbaiki Keandalan SJB (Bagian 2: Peresmian CNG Plant Grati)

Seperti yang saya tulis setahun yang lalu, akhirnya proyek CNG Plant untuk memenuhi kebutuhan PLTG saat beban puncak (Peak Shaving) SJB selesai dibangun. Saya beruntung diundang hadir untuk ikut menyaksikan peresmiannya di PLTGU Grati, Pasuruan, Jawa Timur. Berita-beritanya di media cukup banyak, saya copaskan satu dari situs resmi PLN sbb:

PLN Operasikan CNG Plant Terbesar Di Dunia Untuk PLTGU Grati

PLN mengoperasikan Compressed Natural Gas (CNG) plant yang terbesar di Dunia dengan kapasitas 15 MMSCFD. CNG plant ini memiliki kemampuan menyalurkan gas untuk 3 unit gas turbin pembangkit listrik dengan total kapasitas 300 MW.

CNG PLTGU Grati

Direktur Utama PLN, Nur Pamudji (dua dari kanan) didampingi Direktur Utama PT Indonesia Power, Djoko Hastowo (paling kiri), Direktur Utama PT PJB, Susanto Purnomo (dua dari kiri) dan Dirut PT Enviromate Technology International (ETI), Awi Suriyanto (paling kanan) berbincang saat meninjau lokasi CNG usai peresmian Compressed Natural Gas (CNG) Plant PLTGU Grati, Pasuruan, Jawa Timur, Jumat, 14 Juni 2013.

PLTGU/PLTG Grati terdiri dari 2 blok yang saat ini mendapatkan suplai gas sebesar 90 BBTUD dari Santos melalui sumur Oyong dan Wortel. Suplai gas ini sanggup memasok 3 gas turbin (combined cycle) blok 1 masing-masing sebesar 100 MW. Sedangkan blok 2 (open cycle) berfungsi sebagai pemikul beban puncak (peaker) menggunakan bahan bakar HSD.

Dengan adanya CNG Plant (Compressed Natural Gas), maka PT Indonesia Power akan bisa mengoperasikan blok 2 sebagai pemikul beban puncak tanpa menggunakan BBM.

Biaya pokok produksi listrik menggunakan BBM sekitar 2.800 rupiah per kWh, sementara jika menggunakan CNG, BPP-nya hanya sekitar Rp1.000/ kWh. Dengan produksi listrik PLTG Grati Blok 2 selama 4 sampai 5 jam per hari yang berkisar 1.200 s/d 1.500 MWh, maka potensi penghematan akibat pengurangan BBM ini kurang lebih 1 triliun rupiah per tahun.

Pengunaan bahan bakar gas melalui Fasilitas CNG juga berdampak signifikan dengan lingkungan hidup. Sumbangan terhadap penurunan emisi dunia dari pengoperasian CNG Plant PLTGU Grati Blok 2 diestimasikan sebagai berikut : sekitar 254 ribu ton CO2 per tahun, 126,5 ton kadar SO2 per tahun dan 3.500 ton kadar NO2 pertahun. PLN saat ini juga membangun CNG untuk PLTGU Gresik, PLTGU Tambak Lorok dan PLTGU Muara Tawar.

Berita yang lain:

PERESMIAN CNG PLANT UBP PERAK & GRATI

RI Punya Penampung CNG Terbesar di Dunia

Indonesia Power Resmikan CNG Plant

PLN Resmikan CNG Terbesar Di Dunia

PLN Saves Rp1.7 Trillion from CNG Storage

PLTG CNG, Solusi Baru untuk Memperbaiki Keandalan SJB

DPR menyetujui kenaikan TDL 15%  di tahun 2013. Seperti biasa, saat pembahasan dengan pemerintah, selalu dibarengi dengan isu inefisiensi di tubuh PLN, dan hampir selalu isu BBM menjadi tokoh sentralnya. Dan isu BBM ini ada benarnya, karena BBM masih memakan 43% atau Rp 49 T dari Rp 112 T biaya energi di tahun 2013, sementara subsidi untuk PLN sendiri hanya Rp 78 T.

Sumber: Gatra 20-26 September 2012

Masyarakat awam tentu bertanya, kok bisa porsi BBM masih besar, bukan kah beberapa tahun yang lalu diumumkan proyek besar PPDE 10000 MW yang mayoritas berbahan bakar batubara? Sedikit flashback, proyek crash program PPDE 10000 MW dilatarbelakangi defisit suplai listrik terutama di SJB akibat mandeknya proyek-proyek pembangkit listrik pasca krismon 1998. Sebelum masuk ke topik ini dan solusi yang saat ini sedang dikerjakan, ada isu lain yang terkait.

Isu tersebut adalah isu kecukupan pasokan daya di Sistem Jawa Bali yang 3-4 tahun yang lalu memuncak. Kini isu itu telah berlalu sejak mulai banyak masuknya pembangkit-pembangkit listrik PPDE 10000 MW. Apakah persoalan di SJB selesai sampai disini? Ternyata tidak, masih ada hal-hal yang membuat SJB tidak sepenuhnya bagus, dari sisi keandalan dan kualitas. Tahun-tahun terakhir ini kualitas frekuensi SJB cenderung bergejolak. Jika anda melihat dari trend monitoring frekuensi SJB, ekskursi frekuensi yang liar kadang terjadi dan fluktuasinya dari titik 50 Hz tidak terlalu mulus dibanding kondisi 10 tahun yang lalu misalnya.

 

Ekskursi frekuensi 25 September 2012

Upaya-upaya yang dilakukan oleh P3B JB sebagai operator sistem sebenarnya sudah maksimal untuk mempertahankan keandalan, kualitas dan keekonomian SJB. Salah satu langkah memperbaikinya dari sisi keandalan adalah terus berusaha mengaktifkan kembali fasilitas regulasi primer, governor free,   maupun regulasi sekunder, LFC, sebagai partisipasi unit-unit pembangkit pada SJB. Namun demikian, upaya ini masih belum memadai. Penyebab utamanya adalah berkurangnya proporsi pembangkit-pembangkit yang melayani segmentasi peaking load dan load follower. Hal ini merupakan konsekuensi dari tidak dioperasikannya semaksimal mungkin pembangkit-pembangkit ini yang melayani segmen ini, yang mayoritas berbahan bakar minyak (BBM).

Dahulu PLTG dan PLTGU minyak merupakan andalan SJB untuk menjaga kestabilan frekuensi, karena pembangkit jenis inilah yang bisa menaik dan menurunkan beban dengan ramping rate cepat. Fungsi ini juga bisa dilakukan oleh PLTA waduk, namun kita mengetahui kapasitas PLTA semakin menurun, karena laju sedimentasi waduk yang lebih cepat dari perkiraan semula misalnya, disamping variasi musim hujan dan kemarau juga berpengaruh.

Operator sistem berjuang keras menstabilkan sistem terutama pada waktu-waktu kritis jam 16.00 sampai 18.00 dimana ramp-nya mencapai 2000~3000 MW / jam.

 

Ilustrasi ramping rate demand yang ekstrim

Walaupun pembangkit-pembangkit baseload PLTU-PLTU batubara berusaha dijadikan load follower, namun hasilnya tidak optimal. Contohnya, saat ini pada malam/dini hari PLTU seperti Tanjung Jati, Suralaya bebannya diset rendah dan ketika pagi hari mulai dinaikkan. Dengan cara ini ekskursi frekuensi tetap terjadi terutama jika ada gangguan meski hanya di salah satu komponen SJB (N-1). Kenapa kita peduli pada ekskursi frekuensi? Jika ekskursi ini melampaui batas, bisa terjadi under frequency relay (UFR) bekerja, dan skema load shedding (pengurangan beban) mungkin terjadi. Akibatnya, bisa terjadi, cadangan sistem normal / sangat cukup, namun ada daerah yang mengalami pemadaman.

 

7 Oktober 2012: Masyarakat membutuhkan saluran untuk komplain listrik

Jadi semacam paradoks, suplai berlebih tapi dari sisi konsumen ada yang masih merasakan pemadaman. Penyebab paradoks ini juga bisa disebabkan oleh gangguan di level distribusi / lokal, misal ada penghantar saluran udara yang short karena ranting pohon, atau jembatan trafo IBT (inter-bus transformer) yang tidak cukup / mengalami gangguan.

Apa yang dilakukan oleh pengelola SJB untuk mengatasi hal-hal ini? Salah satu yang sangat strategis adalah berusaha mengoperasikan kembali unit-unit pembangkit yang melayani segmen beban puncak (peak shaving unit). Bagaimana caranya? Kita tahu, subsidi BBM untuk listrik pada APBN terus berusaha ditekan, jadi mustahil memaksakan diri mengoperasikan kembali pembangkit yang menghasilkan 100 MW dengan meminum BBM sampai 100 ribu liter per 3 jam (meski dalam kondisi darurat hal ini tidak bisa dihindari, jika sampai terjadi black/brown out maka kerugian di sisi konsumen akan jauh lebih besar ketimbang subsidi yang dikeluarkan pemerintah).

Ide cemerlang yang akan segera direalisasikan di SJB adalah mensubstitusi BBM dengan bahan bakar gas. Kok bisa dibilang ide cemerlang? Bukan kah kita semua tahu BB Gas dari dulu juga jauh lebih murah daripada BBM?

Yang mungkin belum semua orang awam mengetahui adalah sifat natural penyaluran gas alam. PLTGU di luar negeri seperti di Jepang biasanya menggunakan bahan bakar gas dari gas alam cair (LNG), karena tidak mempunyai sumber /sumur gas di sekitarnya atau di dalam negeri. Karena gasnya disimpan dalam bentuk cair, maka pemanfaatannya dapat diatur, kapan pun dibutuhkan tinggal dialirkan, jadi mirip BBM yang disimpan di dalam tangki timbun. Nah, sumber gas untuk PLTGU-PLTGU di Indonesia tidak seperti itu. Sumber gasnya berasal dari gas pipa, gas yang dialirkan dari sumur / sumber gas melalui pipa gas.

 

Offshore platform

Dan yang perlu diketahui, sifat sumur gas sangat unik. Selain biasanya gas dipakai untuk lifting minyak (sumur gas dan minyak seringkali bercampur, jadi satu sumur bisa menghasilkan minyak dan gas sekaligus), gas ini juga hampir tidak bisa diatur besar kecil keluarannya. Sekali menyemburkan gas, maka harus dialirkan, jika tidak maka reservoirnya bisa rusak. Malahan ada kasus, karena keliru mengoperasikan, maka gasnya bercampur dengan air. Akibatnya, gas pipa aliran arusnya (flow rate) cenderung datar (flat). Manuver flow rate gas hanya terbatas pada memainkan tekanan (pressure) pada pipa yang panjang (line pack), yang biasanya sempit range-nya. Dan bisa diduga, karena bahan bakarnya konstan, maka produksi listrik dari pembangkit listriknya juga konstan.

Jadi PLTGU gas yang ada di Indonesia, suka tidak suka, bermain di segmen pasar beban dasar (base load) karena sifat alaminya tadi. Bagaimana jika SJB tidak menginginkan energi listrik dari PLTGU gas tadi?

 

Foto thermal Flare gas

Pilihannya ya itu tadi, tetap menerima listrik dari PLTGU gas dengan “mengalahkan” produksi listrik dari pembangkit lain, termasuk dari PLTU batubara yang seharusnya bermain di baseload, atau bisa juga membiarkan gas dari sumur gas dibakar (flare) ke udara bebas, namun gas yang dibakar ke udara tersebut tetap harus dibayar (Take or Pay). Gas alam harus dibakar jika dilepas ke udara, karena gas Metana adalah gas rumah kaca (green house gas) yang efek melubangi ozonnya jauh lebih parah daripada gas karbon dioksida hasil pembakaran. Ini juga menjadi alasan kenapa kontrak gas (PJBG/GSA) selalu mencantumkan klausul ToP, yaitu merupakan turunan dari sifat alami sumur gas yang diterjemahkan secara komersial.

Dari sini lah bisa dijelaskan, ide dasar subsitusi BBM dengan BBG pada Peak Shaver Unit sangat cemerlang. Ide ini mulai diidentifikasi dalam RUPTL PLN 2011-2020. Gas pipa yang sifat alaminya telah dijelaskan tadi, dirubah sifatnya dengan cara dijadikan compressed natural gas (CNG). Gas pipa, ditekan / dikompres menjadi bertekanan tinggi, disimpan dalam bejana (vessel), dan dilepas kembali pada saat dibutuhkan, pada Waktu Beban Puncak (WBP).

Jadi CNG ini mewarisi 2 sifat menguntungkan dari BBG dan BBM, dari gas alam mewarisi sifat harganya yang lebih murah dan lebih ramah lingkungan (beban emisi CO2, NOx lebih rendah), dari BBM mewarisi sifat fleksibilitasnya (bisa dimanfaatkan pada waktu tertentu). Meskipun proses kompresi CNG menimbulkan biaya, namun compressed fee ini dan harga BBG-nya masih jauh lebih murah dibandingkan BBM.

Bagaimana dengan alternatif lain untuk memenuhi beban puncak? PLTG CNG ini masih lebih baik dibanding misalnya PLTA Pump Storage (Upper Cisokan yang paling cepat akan beroperasi). Kita tahu investasi membangun PLTA apa pun relatif lebih besar dibanding membangun PLTG, dan waktu pembangunannya lama, bertahun-tahun (bandingkan dengan membangun PLTG, 1 tahun dapat berdiri). Apalagi jika PLTG-nya sudah ada, tinggal membangun CNG plant, maka solusi ini benar-benar dapat diandalkan delivery time-nya.

Bonus keuntungannya, beban PLTU-PLTU batubara diramalkan relatif akan lebih stabil (berkurang naik turunnya) sehingga secara tidak langsung akan meningkatkan keandalan PLTU-PLTU batubara (misal dari risiko bocornya pipa-pipa boiler karena thermal stress/fatigue). Secara keseluruhan, energy cost SJB akan turun untuk kondisi SJB dengan kualitas yang sama. Artinya, jika hendak dilakukan studi, maka perbandingan yang benar, apple to apple, adalah membandingkan energy cost di era pada saat PLTG minyak masih dijalankan (tahun 2011 ke bawah) dengan versus masa pada saat PLTG CNG pertama mulai beroperasi di SJB (diperkirakan mulai Q1 2013).

Komplemen untuk Tulisan Dahlan Iskan: Dampak Pembangkit…

Akhir-akhir ini semakin banyak yang mengulas kelistrikan nasional. Tidak terkecuali pak Dahlan Iskan, yang juga menaruh perhatian pada masalah ini. Terlepas dari pro-kontra pencalonan beliau sebagai calon nahkoda PLN, saya hendak menambahkan dan meluruskan tulisan beliau di Jawa Pos 17  dan 18 November 2009.  Dalam tulisan tsb. disebut-sebut PLTG (Pembangkit Listrik Tenaga Gas), yang kemudian disebut sebagai PLTS (PLT Solar) karena menggunakan solar sebagai bahan bakar.

Apa yang hendak diluruskan dari tulisan tsb. ?

Yang dimaksud dengan “Tenaga Gas” adalah tenaga dari gas hasil pembakaran, jadi bukan gas sebagai bahan bakarnya. Sebuah PLTG umumnya berbahan bakar gas alam (Natural Gas) atau minyak solar (High Speed Diesel Oil). Di beberapa PLTG bahan bakarnya bisa juga berupa condensat gas alam yang harganya rata-rata 20% lebih murah dari HSD oil. Yang lebih ekstrim ada juga yang diberi bahan bakar minyak berat (Marine Fuel Oil). Jadi, apa pun bahan bakarnya, sebuah PLTG tetap lah PLTG, pembangkit listrik tenaga gas.

Yang mungkin juga menggelitik adalah kenapa di sebuah Sistem Tenaga Listrik (STL) dibutuhkan PLTG ?

Jawabannya, karena PLTG terutama yang berbahan-bakar minyak HSD adalah juru selamat yang dibutuhkan ketika terjadi kondisi-kondisi darurat. Sebuah PLTG dalam hitungan menit biasanya dapat langsung menghasilkan listrik ketika terjadi kondisi ekstrim di sistem dimana dibutuhkan suplai listrik dengan segera(misal ada pembangkit listrik yang trip / mendadak mati). Yang dapat mengalahkan kecepatan PLTG cuma PLTA (air). Namun PLTA biasanya sangat terbatas / kecil kapasitasnya untuk membantu sistem. Jadi PLTG minyak biasa digunakan sebagai cadangan dingin atau bisa juga sebagai peak shaver atau peaker atau buffer power plant.

Mungkin juga ada pertanyaan, kenapa juru selamatnya bukan PLTGU (PLT Gas dan Uap) yang lebih efisien tara kalornya (efisiensi thermal dan heat rate) atau PLTG dengan bahan bakar gas atau PLTU berbahan bakar batubara?

Untuk PLTGU, di sistem Jawa Bali, jumlahnya cukup banyak. Gas buang dari hasil pembakaran turbin gas dimanfaatkan untuk memanaskan air dalam ketel atau HRSG (heat recovery steam generator). Uap ini yang dipakai untuk memutar turbin uap dan generatornya dan menghasilkan listrik. PLTGU sering disebut sebagai pembangkit dengan siklus kombinasi (combine cycle), sedang PLTG disebut sebagai pembangkit siklus terbuka (open atau single cycle). Jadi ketika sebuah PLTGU dimanfaatkan siklus terbukanya saja untuk segera memenuhi kebutuhan sistem, maka yang beroperasi sebenarnya adalah PLTG. Sedangkan siklus kombinasinya (turbin uap) membutuhkan waktu dalam hitungan jam untuk menghasilkan listrik.

Untuk PLTG berbahan bakar gas, biasanya sudah dijalankan kontinyu, karena kebanyakan kontrak gas ke pembangkit basisnya adalah “Take or Pay” (TOP) sehingga sangat sulit mengharapkan fluktuasi yang besar atau start-stop dari PLTG gas. Pengecualian, seperti yang juga ditulis di JP, jika PLTG gas memiliki fasilitas penyimpanan gas bertekanan (compressed) atau gas cair (liquid), maka dimungkinkan PLTG gas mungkin cukup ekonomis untuk di start-stop. Namun kembali, fasilitas tsb., biasanya tidak murah dan harga gas cair biasanya juga lebih mahal dari gas alam yang disalurkan dalam pipa.

Untuk PLTU batubara jawabannya jelas, perlu waktu berjam-jam untuk men-start sebuah PLTU batubara, atau bahkan untuk sekedar load up – load down, operator PLTU harus mempertimbangkan banyak hal agar pembangkitnya tetap dapat beroperasi dengan aman.

Jadi, apa kesimpulannya ?

Untuk sebuah keandalan, memang diperlukan biaya lebih yang harus dibayar. Ini yang saya maksud dengan “trade-off” antara keandalan (reliability) vs efisien (ekonomis). Apakah ada pilihan lain ? Bisa saja, operator sistem membiarkan kekurangan suplai dan menjaga kestabilan sistem dengan melepas sebagian beban di konsumen (load shedding) atau pemadaman parsial. Jika langkah ini dilakukan, biasanya akan timbul isu yang lebih besar lagi, kenapa sistem dibiarkan defisit padahal masih ada resources tersedia.

Awan Tag

Nulis Apaan Aja Deh

all about electricity (indonesia)