all about electricity (indonesia)

Posts tagged ‘frekuensi’

PLTG CNG, Solusi Baru untuk Memperbaiki Keandalan SJB

DPR menyetujui kenaikan TDL 15%  di tahun 2013. Seperti biasa, saat pembahasan dengan pemerintah, selalu dibarengi dengan isu inefisiensi di tubuh PLN, dan hampir selalu isu BBM menjadi tokoh sentralnya. Dan isu BBM ini ada benarnya, karena BBM masih memakan 43% atau Rp 49 T dari Rp 112 T biaya energi di tahun 2013, sementara subsidi untuk PLN sendiri hanya Rp 78 T.

Sumber: Gatra 20-26 September 2012

Masyarakat awam tentu bertanya, kok bisa porsi BBM masih besar, bukan kah beberapa tahun yang lalu diumumkan proyek besar PPDE 10000 MW yang mayoritas berbahan bakar batubara? Sedikit flashback, proyek crash program PPDE 10000 MW dilatarbelakangi defisit suplai listrik terutama di SJB akibat mandeknya proyek-proyek pembangkit listrik pasca krismon 1998. Sebelum masuk ke topik ini dan solusi yang saat ini sedang dikerjakan, ada isu lain yang terkait.

Isu tersebut adalah isu kecukupan pasokan daya di Sistem Jawa Bali yang 3-4 tahun yang lalu memuncak. Kini isu itu telah berlalu sejak mulai banyak masuknya pembangkit-pembangkit listrik PPDE 10000 MW. Apakah persoalan di SJB selesai sampai disini? Ternyata tidak, masih ada hal-hal yang membuat SJB tidak sepenuhnya bagus, dari sisi keandalan dan kualitas. Tahun-tahun terakhir ini kualitas frekuensi SJB cenderung bergejolak. Jika anda melihat dari trend monitoring frekuensi SJB, ekskursi frekuensi yang liar kadang terjadi dan fluktuasinya dari titik 50 Hz tidak terlalu mulus dibanding kondisi 10 tahun yang lalu misalnya.

 

Ekskursi frekuensi 25 September 2012

Upaya-upaya yang dilakukan oleh P3B JB sebagai operator sistem sebenarnya sudah maksimal untuk mempertahankan keandalan, kualitas dan keekonomian SJB. Salah satu langkah memperbaikinya dari sisi keandalan adalah terus berusaha mengaktifkan kembali fasilitas regulasi primer, governor free,   maupun regulasi sekunder, LFC, sebagai partisipasi unit-unit pembangkit pada SJB. Namun demikian, upaya ini masih belum memadai. Penyebab utamanya adalah berkurangnya proporsi pembangkit-pembangkit yang melayani segmentasi peaking load dan load follower. Hal ini merupakan konsekuensi dari tidak dioperasikannya semaksimal mungkin pembangkit-pembangkit ini yang melayani segmen ini, yang mayoritas berbahan bakar minyak (BBM).

Dahulu PLTG dan PLTGU minyak merupakan andalan SJB untuk menjaga kestabilan frekuensi, karena pembangkit jenis inilah yang bisa menaik dan menurunkan beban dengan ramping rate cepat. Fungsi ini juga bisa dilakukan oleh PLTA waduk, namun kita mengetahui kapasitas PLTA semakin menurun, karena laju sedimentasi waduk yang lebih cepat dari perkiraan semula misalnya, disamping variasi musim hujan dan kemarau juga berpengaruh.

Operator sistem berjuang keras menstabilkan sistem terutama pada waktu-waktu kritis jam 16.00 sampai 18.00 dimana ramp-nya mencapai 2000~3000 MW / jam.

 

Ilustrasi ramping rate demand yang ekstrim

Walaupun pembangkit-pembangkit baseload PLTU-PLTU batubara berusaha dijadikan load follower, namun hasilnya tidak optimal. Contohnya, saat ini pada malam/dini hari PLTU seperti Tanjung Jati, Suralaya bebannya diset rendah dan ketika pagi hari mulai dinaikkan. Dengan cara ini ekskursi frekuensi tetap terjadi terutama jika ada gangguan meski hanya di salah satu komponen SJB (N-1). Kenapa kita peduli pada ekskursi frekuensi? Jika ekskursi ini melampaui batas, bisa terjadi under frequency relay (UFR) bekerja, dan skema load shedding (pengurangan beban) mungkin terjadi. Akibatnya, bisa terjadi, cadangan sistem normal / sangat cukup, namun ada daerah yang mengalami pemadaman.

 

7 Oktober 2012: Masyarakat membutuhkan saluran untuk komplain listrik

Jadi semacam paradoks, suplai berlebih tapi dari sisi konsumen ada yang masih merasakan pemadaman. Penyebab paradoks ini juga bisa disebabkan oleh gangguan di level distribusi / lokal, misal ada penghantar saluran udara yang short karena ranting pohon, atau jembatan trafo IBT (inter-bus transformer) yang tidak cukup / mengalami gangguan.

Apa yang dilakukan oleh pengelola SJB untuk mengatasi hal-hal ini? Salah satu yang sangat strategis adalah berusaha mengoperasikan kembali unit-unit pembangkit yang melayani segmen beban puncak (peak shaving unit). Bagaimana caranya? Kita tahu, subsidi BBM untuk listrik pada APBN terus berusaha ditekan, jadi mustahil memaksakan diri mengoperasikan kembali pembangkit yang menghasilkan 100 MW dengan meminum BBM sampai 100 ribu liter per 3 jam (meski dalam kondisi darurat hal ini tidak bisa dihindari, jika sampai terjadi black/brown out maka kerugian di sisi konsumen akan jauh lebih besar ketimbang subsidi yang dikeluarkan pemerintah).

Ide cemerlang yang akan segera direalisasikan di SJB adalah mensubstitusi BBM dengan bahan bakar gas. Kok bisa dibilang ide cemerlang? Bukan kah kita semua tahu BB Gas dari dulu juga jauh lebih murah daripada BBM?

Yang mungkin belum semua orang awam mengetahui adalah sifat natural penyaluran gas alam. PLTGU di luar negeri seperti di Jepang biasanya menggunakan bahan bakar gas dari gas alam cair (LNG), karena tidak mempunyai sumber /sumur gas di sekitarnya atau di dalam negeri. Karena gasnya disimpan dalam bentuk cair, maka pemanfaatannya dapat diatur, kapan pun dibutuhkan tinggal dialirkan, jadi mirip BBM yang disimpan di dalam tangki timbun. Nah, sumber gas untuk PLTGU-PLTGU di Indonesia tidak seperti itu. Sumber gasnya berasal dari gas pipa, gas yang dialirkan dari sumur / sumber gas melalui pipa gas.

 

Offshore platform

Dan yang perlu diketahui, sifat sumur gas sangat unik. Selain biasanya gas dipakai untuk lifting minyak (sumur gas dan minyak seringkali bercampur, jadi satu sumur bisa menghasilkan minyak dan gas sekaligus), gas ini juga hampir tidak bisa diatur besar kecil keluarannya. Sekali menyemburkan gas, maka harus dialirkan, jika tidak maka reservoirnya bisa rusak. Malahan ada kasus, karena keliru mengoperasikan, maka gasnya bercampur dengan air. Akibatnya, gas pipa aliran arusnya (flow rate) cenderung datar (flat). Manuver flow rate gas hanya terbatas pada memainkan tekanan (pressure) pada pipa yang panjang (line pack), yang biasanya sempit range-nya. Dan bisa diduga, karena bahan bakarnya konstan, maka produksi listrik dari pembangkit listriknya juga konstan.

Jadi PLTGU gas yang ada di Indonesia, suka tidak suka, bermain di segmen pasar beban dasar (base load) karena sifat alaminya tadi. Bagaimana jika SJB tidak menginginkan energi listrik dari PLTGU gas tadi?

 

Foto thermal Flare gas

Pilihannya ya itu tadi, tetap menerima listrik dari PLTGU gas dengan “mengalahkan” produksi listrik dari pembangkit lain, termasuk dari PLTU batubara yang seharusnya bermain di baseload, atau bisa juga membiarkan gas dari sumur gas dibakar (flare) ke udara bebas, namun gas yang dibakar ke udara tersebut tetap harus dibayar (Take or Pay). Gas alam harus dibakar jika dilepas ke udara, karena gas Metana adalah gas rumah kaca (green house gas) yang efek melubangi ozonnya jauh lebih parah daripada gas karbon dioksida hasil pembakaran. Ini juga menjadi alasan kenapa kontrak gas (PJBG/GSA) selalu mencantumkan klausul ToP, yaitu merupakan turunan dari sifat alami sumur gas yang diterjemahkan secara komersial.

Dari sini lah bisa dijelaskan, ide dasar subsitusi BBM dengan BBG pada Peak Shaver Unit sangat cemerlang. Ide ini mulai diidentifikasi dalam RUPTL PLN 2011-2020. Gas pipa yang sifat alaminya telah dijelaskan tadi, dirubah sifatnya dengan cara dijadikan compressed natural gas (CNG). Gas pipa, ditekan / dikompres menjadi bertekanan tinggi, disimpan dalam bejana (vessel), dan dilepas kembali pada saat dibutuhkan, pada Waktu Beban Puncak (WBP).

Jadi CNG ini mewarisi 2 sifat menguntungkan dari BBG dan BBM, dari gas alam mewarisi sifat harganya yang lebih murah dan lebih ramah lingkungan (beban emisi CO2, NOx lebih rendah), dari BBM mewarisi sifat fleksibilitasnya (bisa dimanfaatkan pada waktu tertentu). Meskipun proses kompresi CNG menimbulkan biaya, namun compressed fee ini dan harga BBG-nya masih jauh lebih murah dibandingkan BBM.

Bagaimana dengan alternatif lain untuk memenuhi beban puncak? PLTG CNG ini masih lebih baik dibanding misalnya PLTA Pump Storage (Upper Cisokan yang paling cepat akan beroperasi). Kita tahu investasi membangun PLTA apa pun relatif lebih besar dibanding membangun PLTG, dan waktu pembangunannya lama, bertahun-tahun (bandingkan dengan membangun PLTG, 1 tahun dapat berdiri). Apalagi jika PLTG-nya sudah ada, tinggal membangun CNG plant, maka solusi ini benar-benar dapat diandalkan delivery time-nya.

Bonus keuntungannya, beban PLTU-PLTU batubara diramalkan relatif akan lebih stabil (berkurang naik turunnya) sehingga secara tidak langsung akan meningkatkan keandalan PLTU-PLTU batubara (misal dari risiko bocornya pipa-pipa boiler karena thermal stress/fatigue). Secara keseluruhan, energy cost SJB akan turun untuk kondisi SJB dengan kualitas yang sama. Artinya, jika hendak dilakukan studi, maka perbandingan yang benar, apple to apple, adalah membandingkan energy cost di era pada saat PLTG minyak masih dijalankan (tahun 2011 ke bawah) dengan versus masa pada saat PLTG CNG pertama mulai beroperasi di SJB (diperkirakan mulai Q1 2013).

Load Frequency Control

Minggu yang lalu penulis berkesempatan mengunjungi Java Control Center di P3B Gandul, Cinere, Jakarta. Disana penulis mendapat penjelasan mengenai frekuensi sistem. Seperti yang sudah kita ketahui, jika tegangan v banyak dipengaruhi (dikendalikan) oleh daya reaktif Q (MVAR), maka frekuensi f dipengaruhi oleh daya nyata P (MW).

JCC sendiri fungsi utamanya menurut Sakya dkk:

– Mengendalikan dan memonitor jaringan 500 kV.

– Mengendalikan dan memonitor pembangkit listrik berskala besar

– Memonitor jaringan 150 kV dan 70 kV melalui komunikasi dengan RCC (Regional Control Center)

– Menjalankan fungsi EMS (Energy Management System).

Salah satu permasalahan di sistem Jawa Bali saat ini adalah frekuensi sistem yang naik turun dengan cepat. Penyebabnya sering disebut sebagai generation-load mismatch.

P3B menyebutkan, hal hal yang mempengaruhi beban adalah hari2 dalam seminggu, jam2 dalam sehari, cuaca, event khusus, dll. Mismatch dari perkiraan beban ada yang merupakan variasi lambat yang deterministik dan variasi cepat yang acak. Ketidakseimbangan ini menyebabkan deviasi frekuensi dari frekuensi nominal.

Cara mengendalikan frekuensi ini adalah dengan melakukan pengaturan/regulasi, salah satunya dengan LFC yang erat kaitannya dengan fasilitas AGC (automatic generation control). AGC memungkinkan JCC mengendalikan beban MW pembangkit listrik (Po) dan rentang bebannya (Pr).

Regulasi utama adalah dengan regulasi primer (Governor Free) yang mempunyai sifat :

  • Merespon dengan cepat terjadinya generation-load mismatch
  • Masih terdapat steady state error (deviasi frekuensi) sesuai karakteristik speed droop
  • Mengakibatkan perubahan aliran daya

Sedang regulasi sekunder (LFC: Load Frequency Control)

  • Mengembalikan frekuensi ke nilai nominalnya
  • Secara otomatis mengembalikan power interchange antar area

Pada regulasi primer,

k = (1/s) * (Pnom/fo)

dimana:

k : Faktor partisipasi (MW/Hz)
Pnom : Daya nominal unit (MW)
fo : Frekuensi referensi (50 Hz)
S : Speed droop

ΔP = – k Δf

dimana:

ΔP : Governor Action
k : Faktor partisipasi (MW/Hz)
Δf : Deviasi frekuensi (f – fo) (Hz)

Pada regulasi primer ini, speed droop pembangkit ditentukan minimal 5% menurut Aturan Jaringan tahun 2007 (Grid Code). Pembangkit2 hidro biasanya dapat memiliki speed droop hingga 2.5%, sedang pembangkit2 thermal dengan turbin gas sekitar 4%. Yang sulit memenuhi aturan ini adalah pembangkit2 PLTU batubara, kendalanya adalah mungkin umur boilernya yang sudah tua (tidak bisa menerima thermal stress yang ekstrim), bisa juga karena nilai kalor batubaranya yang tidak stabil, atau pertimbangan komersial, misal dalam perjanjian jual beli tenaga listrik atau PPA belum diatur). Pada musim hujan, ketika PLTA dapat beroperasi penuh, frekuensi sistem sangat terbantu kualitasnya oleh reaksi cepat governor turbin2 air.

Sedang pada regulasi sekunder,

Pg = Po + N Pr – k Δf

Dimana:

Pg : Daya keluaran unit pembangkit (MW)
Po : Set point (MW)
Pr  : Rentang regulasi (MW)
N : Level isyarat (output PI controller ACE)
k : Faktor partisipasi (MW/Hz)
Δf : Deviasi frekuensi (f – fo) (Hz)

Misal sebuah pembangkit listrik punya Po = 400 MW dan Pr = 15 MW, maka pembangkit ini secara otomatis dapat naik dan turun bebannya dari 385 MW sampai dengan 415 MW, mengikuti naik turunnya frekuensi sistem. Ketika frekuensi kurang dari 50 Hz, beban akan lebih dari 400 MW, sedang ketika f > 50 Hz, load akan < 400 MW, ditandai dengan nilai N yang bergerak di antara -1<N<1.

Ilustrasi di atas menjelaskan apa yang terjadi ketika beban sistem tiba-tiba naik. Tanpa regulasi frekuensi akan turun terus. Dengan regulasi primer (governor free), dalam waktu sekitar < 20 detik frekuensi dapat ditahan. Namun selama demand > supply maka akan tetap ada Δf. Hal ini dapat diatasi jika sistem juga punya regulasi sekunder (LFC). Dalam waktu 1-2 menit frekuensi akan kembali ke nominal ketika pembangkit2 listrik yang mengaktifkan LFC-nya mulai berkontribusi menyumbang daya ke sistem. Lebih jauh tentang regulasi ini dapat dibaca di file di situs UCTE.

Awan Tag

Nulis Apaan Aja Deh

all about electricity (indonesia)